MCM-BP regulates unloading of the MCM2-7 helicase in late S phase.
نویسندگان
چکیده
Origins of DNA replication are licensed by recruiting MCM2-7 to assemble the prereplicative complex (pre-RC). How MCM2-7 is inactivated or removed from chromatin at the end of S phase is still unclear. Here, we show that MCM-BP can disassemble the MCM2-7 complex and might function as an unloader of MCM2-7 from chromatin. In Xenopus egg extracts, MCM-BP exists in a stable complex with MCM7, but is not associated with the MCM2-7 hexameric complex. MCM-BP accumulates in nuclei in late S phase, well after the loading of MCM2-7 onto chromatin. MCM-BP immunodepletion in Xenopus egg extracts inhibits replication-dependent MCM dissociation without affecting pre-RC formation and DNA replication. When excess MCM-BP is incubated with Xenopus egg extracts or immunopurified MCM2-7, it binds to MCM proteins and promotes disassembly of the MCM2-7 complex. Recombinant MCM-BP also releases MCM2-7 from isolated late-S-phase chromatin, but this activity is abolished when DNA replication is blocked. MCM-BP silencing in human cells also delays MCM dissociation in late S phase. We propose that MCM-BP plays a key role in the mechanism by which pre-RC is cleared from replicated DNA in vertebrate cells.
منابع مشابه
Cell-Cycle-Regulated Interaction between Mcm10 and Double Hexameric Mcm2-7 Is Required for Helicase Splitting and Activation during S Phase.
Mcm2-7 helicase is loaded onto double-stranded origin DNA as an inactive double hexamer (DH) in G1 phase. The mechanisms of Mcm2-7 remodeling that trigger helicase activation in S phase remain unknown. Here, we develop an approach to detect and purify the endogenous DHs directly. Through cellular fractionation, we provide in vivo evidence that DHs are assembled on chromatin in G1 phase and sepa...
متن کاملInteractions of the Human MCM-BP Protein with MCM Complex Components and Dbf4
MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not we...
متن کاملMCM2-7 Form Double Hexamers at Licensed Origins in Xenopus Egg Extract*
In late mitosis and G1, Mcm2-7 are assembled onto replication origins to license them for initiation in the upcoming S phase. After initiation, Mcm2-7 provide helicase activity to unwind DNA at the replication fork. Here we examine the structure of Mcm2-7 on chromatin in Xenopus egg extracts. We show that prior to replication initiation, Mcm2-7 is present at licensed replication origins in a co...
متن کاملArchaeal MCM Proteins as an Analog for the Eukaryotic Mcm2–7 Helicase to Reveal Essential Features of Structure and Function
In eukaryotes, the replicative helicase is the large multisubunit CMG complex consisting of the Mcm2-7 hexameric ring, Cdc45, and the tetrameric GINS complex. The Mcm2-7 ring assembles from six different, related proteins and forms the core of this complex. In archaea, a homologous MCM hexameric ring functions as the replicative helicase at the replication fork. Archaeal MCM proteins form therm...
متن کاملHighly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload
The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2011